SYLLABUS BREAKDOWN SCHEME FOR MATH113 DAE FIRST YEAR EXAMINATION 2011 & ONWARD

Common with Civil, Mechanical, Auto-Diesel, Auto-Farm, Printing & Graphic Arts, RAC, Foundry & Pattern Making, Welding & Metallurgy, Automation, Chemical, Textile, Petroleum, Petro-Chemical

PAPER A						
Sr. No.	Contents	MCQs	Short	Long		
SI. 1NO.	Contents	MCQs	Questions	Questions		
1	Quadratic Equations	2	. 3	1		
2	Arithmetic Progression & Series	3	6	1		
3	Geometric Progression and Series	3	O	1		
4	Binomial Theorem	3	6	1		
5	Partial Fractions	3	0	1		
6	Fundamentals of Trigonometry		12			
7	Trigonometric Functions and Ratios	7		2		
8	General Identities	,		2		
9	Solution of Triangles					
TOTAL 15 27 5						
12.00						
	PAPER B					
10	Mensuration of Solids	9	17	3		
11	Vectors	3	5	1		
12	Matrices & Determinants	3	5	1		
TOTAL 15 27 5						

MARKS BREAKDOWN SCHEME FOR APPLIED MATHEMATICS - I							
PAPER	PAPER Objective Subjective					Total	
	_	Section I: Short Qu	Section I: Short Questions Section II: Long Questions				
A	15 20%.	36 (60/ 120)	24	(41/ 51-80)	75	
В	15	36		24		75	
				GRAND	TOTAL	150	

NOTE:

- 1. Objective paper consists of 15 MCQs of 1 mark each.
- 2. Subjective portion consists of two sections:

Section-I contains 27 short questions out which 18 will be solved of 2 marks each.

Section-II contains 5 long questions out of which 3 will be solved of 8 marks each.

3. In Section-II, each long question consists of two parts of 4 marks each.

Common with Civil, Mechanical, Auto-Diesel, Auto-Farm, Printing &
Graphic Arts, RAC, Foundry & Pattern Making, Welding & Metallurgy,
Automation, Chemical, Textile, Petroleum, Petro-Chemical

Roll No.	
Signature of	
Candidate:	
Signature of	
Deputy Supdt	

Auton	Signature of Candidate:							
Time:	30 Minutes	R A: OBJECTIVE	<u>Marks:</u> 15	Signature of Deputy Supdt.				
Note:	Note: Write your Roll Number in the space provided. Over-writing, Cutting, Erasing, Using lead pencil will result in loss of marks.							
Q.No.	1. Each question has f	our possible answers.	Choose the correct ans	wer and encircle it				
(i)	The sum of roots of e (a) b/a	equation $ax^2 + bx + c =$ (b) - b/a	0 is equal to: (c) c/a	(d) – c/a				
(ii)	The discriminant of q (a) $b^2 - 4ac$	quadratic equation is: (b) $\sqrt{b^2 - 4ac}$	(c) $b^2 + 4ac$	(d) $\sqrt{b^2 + 4ac}$				
(iii)	The arithmetic mean (a) $a^2 - x^2$	between a – x and a + (b) 2a	x is equal to: (c) a	(d) a/2				
(iv)	-	etric progression then (b) $y = (x + z)/2$	the relation between th (c) $y = xz$	em is: (d) $y = z/x$				
(v)	If first term is "a" and (a) $a + (n + 1)d$		s "d" the the nth term of (c) $a + (n-1)d$					
(vi)	In binomial theorem, (a) ${}^{n}C_{r} a^{n-r} b^{r}$	the general term in the	e expansion of $(a + b)^n$ i $(c) {}^nC_r a^n b^{n-r}$	s: $ (d) {}^{n}C_{r} a^{r} b^{n-r} $				
(vii)	(a) 23	in the expansion of (x (b) 24	+ y) ²⁴ is: (c) 25	(d) 12				
(viii)	The number of partia (a) 1	1 fractions of $x^4 - 1$ (b) 2	are: (c) 3	(d) 4				
(ix)	The relation between (a) $l = r/\theta$	the arc-length 1, radius (b) $1 = \theta/r$	s r and central angle θ i (c) $\theta = 1/r$	n radian is: (d) $\theta = r/l$				
(x)	If $\sin \theta < 0$ and $\cos \theta > 0$	0 then the angle lies i (b) II	n the quadrant: (c) III	(d) IV				
(xi)	In radian measure, th (a) 0.01745 rad	e angle of 1° is equal to (b) 0.17450 rad	o: (c) 0.001745 rad	(d) 1.7450 rad				
(xii)	The trigonometric function $(a) 1 - \tan^2 \theta$	nction $\sec^2\theta$ is equal to (b) $1 + \tan^2\theta$	c): $ (c) 1 - \cot^2 \theta $	(d) $1 + \cot^2\theta$				

(xiii) $\cos (270 + \theta)$ is equal to (a) $\cos \theta$ (b) $-\cos \theta$ (c) $\sin \theta$ (d) $-\sin \theta$ (xiv) $2\sin^2 \theta$ is equal to (a) $1 - \cos 2\theta$ (b) $1 + \cos 2\theta$ (c) $1 - \cos \theta$ (d) $1 + \cos \theta$

(d) 135°

(xv) If one angle of right triangle is 45° then the other angle is:
(a) 30° (b) 45° (c) 60°

Common with Civil, Mechanical, Auto-Diesel, Auto-Farm, Printing & Graphic Arts, RAC, Foundry & Pattern Making, Welding & Metallurgy, Automation, Chemical, Textile, Petroleum, Petro-Chemical

PAPER A: SUBJECTIVE

Time: 2 hours 30 Minutes

Marks: 60

Note: Solve any EIGHTEEN (18) questions from Section-I and any THREE (3) questions from Section-II

SECTION - I

Q.No. 2. Write short answers to any EIGHTEEN (18) from the following questions.

 $(18 \times 2 = 36)$

(i) Form the quadratic equation whose roots are $3 + \sqrt{5}$ and $3 - \sqrt{5}$

(ii) Solve $32 - 3x^2 = 10x$ by quadratic formula

(iii) Find the nature of the roots of the equation $3x^2 + 7x - 2 = 0$

(iv) Insert two arithmetic means between – 5 and 40

- (v) Sum the arithmetic series 3+11+19+---- to 16 terms
- (vi) Find the 7th term of A.P. in which the first term is 7 and the common difference is -3.
- (vii) By using Binomial formula, compute (0.98)⁶ to two decimal places.

(viii) Find the fifth term of the binomial expression $(x - y)^{10}$

(ix) Using the Binomial Series, calculate $\sqrt{40}$, to the nearest hundredth.

(x) Find geometric mean between 8 and 72

- (xi) Sum the geometric series $1 + 1/3 + 1/9 + \dots + 1/9$
- (xii) At 4% compounded annually, find the compounded amount of Rs. 1000 at the end of 7 years.
- (xiii) Resolve into partial fractions 2x / (x-2)(x+5)
- (xiv) Define rational improper fraction and give example
- (xv) Write an identity equation of $8x^2/(1-x^2)(1+x^2)^2$
- (xvi) What is the length of an arc of a circle of radius 5 cm whose central angle is of 140°?
- (xvii) Find $\cos\theta$ if $\sin\theta = 7/25$ and angle θ is an acute angle.
- (xviii) Prove the trigonometric identity: $tan\theta + cot\theta = sec\theta.cosec\theta$
- (xix) Prove that $\sqrt{3}\cos\theta \sin\theta = 2\cos(\theta + 30^\circ)$
- (xx) If $\cos\theta = -5/13$ and the terminal side of angle θ is in the second quadrant, find the value of $\sin\theta/2$.
- (xxi) Express $\cos 12\theta \cos 4\theta$ as a product of trigonometric functions.
- (xxii) In right triangle ABC, $\gamma = 90^{\circ}$, a = 5, c = 13 then find the value of angle α .
- (xxiii) Find the distance of man from the foot of the tower 100m high if the angle of elevation of its top as observed by the man is 52° 30'.
- (xxiv) In any triangle ABC: b = 7, $\alpha = 40^{\circ}$, $\beta = 22^{\circ}$. Find the value of side a.
- (xxv) In any triangle ABC, find the value of angle β if a = 13, b = 10 and c = 17.
- (xxvi) Express Sin3θ.Cos5θ as sum or difference of trigonometric functions.
- (xxvii) Verify that $\sin^2 30^\circ + \sin^2 60^\circ + \tan^2 45^\circ = 2$

SECTION - II

Note: Solve any THREE (3) questions.

 $(8 \times 3 = 24)$

- Q.3(a) Solve the quadratic equation $x^2 + (m-n)x 2(m-n)^2 = 0$ (b) Show that the equation $x^2 + (mx + c)^2 = a^2$ has equal roots if $c^2 = a^2 (1 + m^2)$
- Q.4(a) Find the 20th term of an A.P. whose 3rd term is 7 and the 8th term is 17.
 - (b) If $S_6 = 665/144$ and r = 2/3 then find the first term of a geometric sequence.
 - Q.5(a) Resolve into partial fractions: $1/x^4(x+1)$
 - (b) Find the term independent of x in the expansion of $(2x^2 1/x)^{12}$
 - Q.6(a) Prove that $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ} = 3/16$
 - (b) Prove the identity $Sec^2\theta + tan^2\theta = (1 Sin^4\theta) Sec^4\theta$
 - Q.7(a) Show that $[\cos(\alpha + \beta)][\cos(\alpha \beta)] = \cos^2 \alpha \sin^2 \beta$
 - (b) Solve the \triangle ABC when $\gamma = 90^{\circ}$, a = 250, $\alpha = 42^{\circ} 25'$

Graphic Arts, RAC, Foundry & Pattern Making, Welding & Metallurgy, Automation Chemical Textile Petroleum Petro-Chemical	Roll No Signature of Candidate:
--	---------------------------------------

Roll No.	
Signature of	
Candidate:	
Signature of	
Deputy Supdt	

(d) 3×3

PAPER B: OBJECTIVE					Candidate: Signature of Deputy Supdt				
Time	<u>:</u> 30	Minutes				Marks: 15	Deputy	Supa	
Note:		Vrite your Roll Nun will result in loss of		n the space provided. s.	Over	-writing, Cutti	ng, Erasi	ing, U	sing lead pencil
Q.No	. 1.	Each question has f	our pe	ossible answers. Choo	ose th	e correct answ	er and er	ncircle	e it.
(i) (ii)	(a)		(b)		•	4 Dimensions	S	(d)	None of these
,		Circular Prism		Cubical Prism	(c)	Polygonal Pri	ism	(d)	None of these
(iii)	\	olume of circular c	ylind	er of height "h" and r	adius	"r" is			
		$\pi r^2 h$		2πrh		$2\pi rh^2$		(d)	$2\pi r^2 h$
(iv)	I	t area of base of pyr	amid	is "A" and height "h'	'then	volume of pyr	ramid is		
	(a)	1/3 Ah	(b)	1/2Ah	(c)	1/6 Ah		(d)	Ah
(v)	١	olume of a cone of	heigh	ht "h" and base radius	s "r" i	S		,	
	(a)	$1/3\pi r^2 h$	(b)	$1/3\pi$ rh	(c)	$\pi r^2 h$		(d)	$1/2\pi r^2 h$
(vi)	S	Surface area of sphe	re of	radius "r" is					
	(a)	$4\pi r^2$	(b)	$4\pi r^3$	(c)	πr^2		(d)	$4/3\pi r^2$
(vii)	7	The portion of the pr	rism b	petween the plane sec	tion a	nd its base is c	alled		
	(a)	Annulus	(b)	Frustum	(c)	Ring		(d)	None of these
(viii)) I	f R and r are the ext	ternal	and internal radii of	spheri	ical shell respe	ctively th	hen its	s volume is
	(a)	$4/3\pi (R^3 - r3)$	(b)	$4/3\pi (R^2 - r^2)$	(c)	$4\pi(R^3-r^2)$		(d)	$\pi/3(R^3-r^3)$
(ix)	1	A prism whose leng	th bre	adth and height are ea	qual is	s			
	(a)	Cube	(b)	Frustum	(c)	Cylinder		(d)	None of these
(x)	. 7	The magnitude of ve	ector 2	$2\underline{\mathbf{i}} - 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$ is equal to					•
	(a)	1	(b)	2	(c)	3		(d)	4
(xi)	7	The vector perpendi	cular	to each of the vectors	<u>a</u> and	d <u>b</u> is			
	(a)	<u>a</u> x <u>b</u>	(b)	<u>a</u> . <u>b</u>	(c)	$\underline{\mathbf{a}} + \underline{\mathbf{b}}$		(d)	$\underline{a} - \underline{b}$
(xii)	, 1	Vectors <u>a</u> and <u>b</u> are j	perpe	ndicular if					
•	(a)	$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = 0$	(b)	$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = 0$	(c)	$\underline{\mathbf{a}} \times \underline{\mathbf{b}} = 1$		(d)	$\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = 1$
(xiii) N	Matrix A is called si	ingula	ır if					
	(a)	A = 0	(b)	$ A \neq 0$	(c)	A = 1		(d)	IAI ≠1
(xiv) I	n an identity matrix	all th	ne diagonal elements					
	(a)	zeroes	(b)	2	(c)	1		(d)	None of these

(xv) The order of the matrix $\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}$ is:

(b) 3×1

(c) 1×1

(a) 1 x 3

Common with Civil, Mechanical, Auto-Diesel, Auto-Farm, Printing & Graphic Arts, RAC, Foundry & Pattern Making, Welding & Metallurgy, Automation, Chemical, Textile, Petroleum, Petro-Chemical

PAPER B: SUBJECTIVE

Time: 2 hours 30 Minutes

Marks: 60

Note: Solve any EIGHTEEN (18) questions from Section-I and any THREE (3) questions from Section-II

SECTION-I

Q.No. 2. Write short answers to any EIGHTEEN (18) from the following questions. (18 \times 2 = 36)

- Define plane figures. (i)
- Define circumscribed circle. (ii)
- If the perimeter of a square is 40cm find the area of the square. (iii)
- Write the formula of area of rhombus when two diagonals are given. (iv)
- Write the formula of area of regular polygon of n sides when length of a side "a" is given. (v)
- Define concentric circles (vi)
- Volume of the cube is 95 cu. cm. Find the surface area and the edge of the cube. (vii)
- The dimensions of rectangular prism are 6m, 4m, 3m respectively. Find the volume and surface area of the (viii) rectangular prism.
- The curved surface area of a circular cylinder is 1000 sq.m. and diameter of the base is 20m. (ix) Find the volume and height of the cylinder.
- The diameter of right circular cylinder is 38cm and its length is 28 cm. Find its total surface area. (x)
- Find the volume of a pyramid whose base is an equilateral triangle of side 1m and whose height is (xi)4m.
- Write the formula of volume of a cone. (xii)
- Find the total surface area of a cone of radius 6.6 cm and height of 12.5 cm. (xiii)
- The diameter of a sphere is 13.5 m. Find its surface area and volume. (xiv)
- Write the formula for Simpson's rule and describe when we use it. (xv)
- Write down the definition of right prism. (xvi)
- Write the formula for the volume of hollow spherical shell. (xvii)
- Find the real numbers x, y, z such that $x\underline{i} + 2y\underline{j} z\underline{k} + 3\underline{i} \underline{j} = 4\underline{i} + 3\underline{k}$ (xviii)
- Find the vector AB, if the position vectors of A and B are $5\underline{i} 2\underline{j} + 4\underline{k}$ and $\underline{i} + 3\underline{j} + 7\underline{k}$ (xix)
- For what value of λ , the vectors $2\underline{i} \underline{i} + 2\underline{k}$ and $3\underline{i} + 2\lambda\underline{j}$ are perpendicular? (xx)
- Find $\underline{a} \times \underline{b}$ if vectors $\underline{a} = 2\underline{i} + 3\underline{i} + 4\underline{k}$ and $\underline{b} = \underline{i} \underline{i} + \underline{k}$. (xxi)
- Find the unit vector along the vector $4\underline{i} 3\underline{i} 5\underline{k}$. (xxii)
- Define transpose of a matrix. (xxiii)
- Show that $(A+B)^2 \neq A^2 + 2AB + B^2$ when A and B are square matrices. (xxiv)
- (xxy)
- Find x if matrix $A = \begin{bmatrix} x & 3 \\ 4 & 1 \end{bmatrix}$ is singular. Let $A = \begin{bmatrix} 7 & -3 \\ 2 & 1 \end{bmatrix}$ then find its inverse.
- Define identity matrix with respect to multiplication.

SECTION - II

Note: Solve any THREE (3) questions.

 $(8 \times 3 = 24)$

- 2x + 2y + z = 1Q.3 (a) Use cramer's rule to solve. x - y + 6z = 213x + 2y - z = -4
 - (b) Show that: $\begin{vmatrix} a \\ a \end{vmatrix} = (2a+l)(l-a)^2$
- The sides of triangular prism are 17cm, 25cm, and 28cm respectively. The volume of the prism is 4200 Q.4 (a) cu.cm. What is its height?
 - Three sides of a triangle are 4.25, 4.50 and 4.75 meters respectively. It we consider 3.25m instead of (b) 4.25m by mistake, what will be the error in computing the area of the triangle.
- A rectangular piece of iron sheet 1000 sq.cm. in area is bent to form a cylinder 31.89 cm. in diameter. Q.5 (a) Find the height and volume of this cylinder.
 - A regular octagon circumscribes a circle of radius 2cm. Find the area of octagon. (b)
- A pyramid in a square base has every edge 100dm long. Find the edge of a cube of equal volume. Q.6 (a)
 - A lead bar of length 10cm width 5cm thickness 4cm is melted down and made in five equal spherical (b) bullets. Find the radius of each bullet.
- Find the unit vector perpendicular to each of the vectors $\underline{\mathbf{a}} = \underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$ and $\underline{\mathbf{b}} = 2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} \underline{\mathbf{k}}$ Q.7 (a)
 - Find the cosine of the angle between the vectors $\underline{a} = 3\underline{i} + \underline{j} + 2\underline{k}$ and $\underline{b} = 2\underline{i} + 2\underline{j} 4\underline{k}$ (b)