SYLLABUS BREAKDOWN SCHEME FOR MATH123 DAE FIRST YEAR EXAMINATION 2011 & ONWARD

Common with Electrical, Instrument, Food, Computer, Electronics, Computer Information, Telecommunications and Bio-Medical Technologies

	PAPER A			
Sr. No.	Contents	MCQs	Short Questions	Long Questions
1	Quadratic Equations	3	5	1
2	Binomial Theorem	3	5	1
4	Fundamentals of Trigonometry			
5	Trigonometric Functions and Ratios		10	
6	General Identities	6 12		2
7	Solution of Triangles			
8	Vectors & Phasors	3	5	1
	TOTAL	15	27	5
	1			The second
	PAPER B			
3	Partial Fractions	2	4	1
9	Complex Numbers	3	5	1
10	Boolean Algebra & Gate Networks	3	5	1
11	Plane Analytic Geometry & Straight Line	5	9	1
12	Equations of the Straight Line	5		
13	Equations of the Circle	2	4	1
	TOTAL	15	27	5

MARKS BREAKDOWN SCHEME FOR APPLIED MATHEMATICS - I				
PAPER	R Objective Subjective		Total	
		Section I: Short Questions	Section II: Long Questions	Marks
A	15	36	24	75
В	15	36	24	75
			GRAND TOTAL	150

NOTE:

- 1. Objective paper consists of 15 MCQs of 1 mark each.
- 2. Subjective portion consists of two sections:

Section-I contains 27 short questions out which 18 will be solved of 2 marks each.

Section-II contains 5 long questions out of which 3 will be solved of 8 marks each.

3. In Section-II, each long question consists of two parts of 4 marks each.

MODEL PAPER MATH123: APPLIED MATHEMATICS - I DAE FIRST YEAR EXAMINATION 2011 & ONWARD

Common with Electrical, Instrument, Food, Computer, Electronics, Computer Information, Telecommunications and **Bio-Medical Technologies**

Roll No
Signature of
Candidate:
Signature of
Deputy Supdt

PAPER A: OBJECTIVE

Time:	30	Minutes
-------	----	---------

Marks: 15

Note:	Write your Roll Number in the space provided. Over-writing, Cutting, Erasing, Using lead pencil will result in loss of marks.

- Q.No. 1. Each question has four possible answers. Choose the correct answer and encircle it The sum of roots of equation $ax^2 + bx + c = 0$ is equal to: (i) (a) b/a(b) - b/a(d) - c/a(ii) The discriminant of quadratic equation is: (a) $b^2 - 4ac$ (d) $\sqrt{b^2 + 4ac}$ (b) $\sqrt{b^2 - 4ac}$ (c) $b^2 + 4ac$ If $x^2 - 3 = 0$ then the solution set is (iii) (c) $\{-\sqrt{3}, 3\}$ (d) $\{\sqrt{3}, -\sqrt{3}\}$ (a) $\{3, -3\}$ (b) $\{-3, \sqrt{3}\}$ The value of ⁸C₄ is equal to (iv) (a) 70 (c)4(d) 12 Vectors a and b are perpendicular if (v) (a) $a \times b = 0$ (b) <u>a</u> . <u>b</u> = 0 (c) $\underline{a} \times \underline{b} = 1$ (d) $a \cdot b = 1$ In binomial theorem, the general term in the expansion of $(a + b)^n$ is: (vi) (a) ${}^{n}C_{r} a^{n-r} b^{r}$ $(b)^{n}C_{r}a^{n+r}b^{r}$ (c) ${}^{n}C_{r} a^{n} b^{n-r}$ (d) ${}^{n}C_{r} a^{r} b^{n-r}$ The number of terms in the expansion of $(x + y)^{24}$ is: (vii) (a) 23 (b) 24 (d) 12 The magnitude of vector $2\underline{\mathbf{i}} - 2\mathbf{j} - \underline{\mathbf{k}}$ is equal to: (viii) (c) 3 (a) 1 (b) 2 (d) 4 (ix) The vector perpendicular to each of the vectors a and b is: (a) a x b $(b) a \cdot b$ (c) a + b(d) a - bIf $\sin \theta < 0$ and $\cos \theta > 0$ then the angle lies in the quadrant: (x) (b) II (c) III (d) IV In radian measure, the angle of 1° is equal to: (a) 0.01745 rad (b) 0.17450 rad (c) 0.001745 rad (d) 1.7450 rad
- (xi)
- (xii) The trigonometric function $\sec^2\theta$ is equal to: (a) $1 - \tan^2\theta$ (b) $1 + \tan^2 \theta$ (c) $1 - \cot^2 \theta$ (d) $1 + \cot^2\theta$
- (xiii) $\cos (270 + \theta)$ is equal to (a) $\cos\theta$ (b) $-\cos\theta$ (c) $\sin\theta$ $(d) - \sin\theta$
- $2\sin^2\theta$ is equal to (xiv) (a) $1 - \cos 2\theta$ (b) $1 + \cos 2\theta$ (c) $1 - \cos\theta$ (d) $1 + \cos\theta$
- If one angle of right triangle is 45° then the other angle is: (xv) (a) 30° (b) 45° $(c) 60^{\circ}$ (d) 135°

MODEL PAPER MATH123: APPLIED MATHEMATICS - I **DAE FIRST YEAR EXAMINATION 2011 & ONWARD**

Common with Electrical, Instrument, Food, Computer, Electronics, Computer Information, Telecommunications and Bio-Medical Technologies

PAPER A: SUBJECTIVE

Time: 2 hours 30 Minutes

Marks: 60

Note: Solve any EIGHTEEN (18) questions from Section-I and any THREE (3) questions from Section-II

SECTION - I

Q.No. 2. Write short answers to any EIGHTEEN (18) from the following questions.

 $(18 \times 2 = 36)$

- (i) Solve the equation (2x + 3)(x + 1) = 1
- (ii) Solve $32 - 3x^2 = 10x$ by the method of completing square
- Find the nature of the roots of the equation $3x^2 + 7x 2 = 0$ (iii)
- (iv) Without solving, find the sum and product of roots of the equation $x^2 - 9 = 0$
- (v) Form the quadratic equation whose roots are $2 + \sqrt{3}$ and $2 - \sqrt{3}$
- (vi) Expand $(x + 1/x)^4$ by using Binomial theorem
- By using Binomial formula, compute (0.98)⁶ to two decimal places. (vii)
- (viii) Find the fifth term of the binomial expression $(x - y)^{10}$
- (ix) Using the Binomial Series, calculate $\sqrt{40}$, to the nearest hundredth.
- (x) Write and simplified first three terms in the expansion of $(1 + x)^{-3}$
- (xi)
- Find real numbers x, y, z such that $x\underline{\mathbf{i}} + 2y\underline{\mathbf{j}} z\underline{\mathbf{k}} + 3\underline{\mathbf{i}} \underline{\mathbf{j}} = 4\underline{\mathbf{i}} + 3\underline{\mathbf{k}}$ Find the vector \overrightarrow{AB} , if the position vectors of A and B are $5\underline{\mathbf{i}} 2\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$ and $\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 7\underline{\mathbf{k}}$ respectively. (xii)
- For what value of λ , the vectors $2\underline{\mathbf{i}} \underline{\mathbf{j}} + 2\underline{\mathbf{k}}$ and $3\underline{\mathbf{i}} + 2\lambda\underline{\mathbf{j}}$ are perpendicular? (xiii)
- (xiv) Find $\underline{\mathbf{a}} \times \underline{\mathbf{b}}$ if vector $\underline{\mathbf{a}} = 2\underline{\mathbf{i}} + 3\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$ and vector $\underline{\mathbf{b}} = \mathbf{i} - \underline{\mathbf{j}} + \mathbf{k}$
- (xv) Find the unit vector along the vector $4\mathbf{i} - 3\mathbf{j} - 5\mathbf{k}$
- (xvi) What is the length of an arc of a circle of radius 5 cm whose central angle is of 140°?
- (xvii) Find $\cos\theta$ if $\sin\theta = 7/25$ and angle θ is an acute angle.
- (xviii) Prove the trigonometric identity: $tan\theta + cot\theta = sec\theta.cosec\theta$
- Prove that $\sqrt{3} \cos \theta \sin \theta = 2\cos(\theta + 30^{\circ})$ (xix)
- If $\cos\theta = -5/13$ and the terminal side of angle θ is in the second quadrant, find the value of $\sin\theta/2$. (xx)
- (xxi) Express $\cos 12\theta - \cos 4\theta$ as a product of trigonometric functions.
- (xxii) In right triangle ABC, $\gamma = 90^{\circ}$, a = 5, c = 13 then find the value of angle α .
- (xxiii) Find the distance of man from the foot of the tower 100m high if the angle of elevation of its top as observed by the man is 52° 30'.
- (xxiv) In any triangle ABC: b = 7, $\alpha = 40^{\circ}$, $\beta = 22^{\circ}$. Find the value of side a.
- (xxv) In any triangle ABC, find the value of angle β if a = 13, b = 10 and c = 17.
- (xxvi) Express Sin30.Cos50 as sum or difference of trigonometric functions.
- (xxvii) Verify that $\sin^2 30^\circ + \sin^2 60^\circ + \tan^2 45^\circ = 2$

SECTION - II

Note: Solve any THREE (3) questions.

 $(8 \times 3 = 24)$

Q.3(a)

$$\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$$

- Solve: $\frac{1}{a+b+x} = \frac{1}{a} + \frac{1}{b} + \frac{1}{x}$ (b) Show that the equation $x^2 + (mx+c)^2 = a^2$ has equal roots if $c^2 = a^2 (1 + m^2)$
- Q.4(a) Find the term independent of x in the expansion of $(2x^2 1/x)^{12}$
 - (b) Find the value of: $(x + y)^5 + (x y)^5$
- Q.5(a) Show that $[\cos(\alpha + \beta)][\cos(\alpha \beta)] = \cos^2 \alpha \sin^2 \beta$
 - (b) Prove that $Sec^2\theta + tan^2\theta = (1 Sin^4\theta) Sec^4\theta$
- Q.6(a) Prove that $\sin 20^{\circ} \cdot \sin 40^{\circ} \cdot \sin 60^{\circ} \cdot \sin 80^{\circ} = 3/16$
 - (b) Solve the \triangle ABC when $\gamma = 90^{\circ}$, a = 250, $\alpha = 42^{\circ} 25'$
- Q.7(a) Find the unit vector perpendicular to both $\underline{a} = \underline{i} + \underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} + 3\underline{j} \underline{k}$
 - (b) Find the cosine of the angle between the vectors:

$$\underline{\mathbf{a}} = 3\underline{\mathbf{i}} + \underline{\mathbf{j}} + 2\underline{\mathbf{k}}$$
, $\underline{\mathbf{b}} = 2\underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 4\underline{\mathbf{k}}$

MODEL PAPER MATH123: APPLIED MATHEMATICS – I

DAE FIRST YEAR EXAMINATION 2011 & ONWARD Common with Electrical, Instrument, Food, Computer, Electronics, Roll No. Computer Information, Telecommunications and Signature of **Bio-Medical Technologies** Candidate: Signature of PAPER B: OBJECTIVE **Deputy Supdt.** Time: 30 Minutes Marks: 15 Write your Roll Number in the space provided. Over-writing, Cutting, Erasing, Note: Using lead pencil will result in loss of marks. Q.No. 1. Each question has four possible answers. Choose the correct answer and encircle it. The numbers of partial fractions of $(3x-5)/(x^4-1)$ are: (i) (a) 1 (b) (c) 3 (d) If degree of P(x) is less than degree of Q(x) then P(x)/Q(x) is called (ii) (a) Proper Fraction (b) Improper Fraction (c) Polynomial Identity (d) The additive inverse of a + ib is: (a) a + ib(b) a - ib -a + ib(d) -a - ib (iv) The multiplicative identity of complex number is: (b) (d) None of these Modulus of 4-3i is: (a) 5 (b) $\sqrt{7}$ 1 7 (c) (d) Binary equivalent of decimal number 9 is: (a) $(1001)_2$ (b) $(1010)_2$ (c) $(0101)_2$ (d) $(0110)_2$ (vii) In Boolean Algebra X + Y is equal to (a) $\overline{X} + \overline{Y}$ (b) \overline{X} \overline{Y} X + Y(c) (d) X . Y (viii) In Boolean Algebra X.X is equal to (a) 1 (b) 0 (c) X + X(d) X (ix) Distance between (4,3) and (7,5) is: $\sqrt{13}$ (a) 25 (b) 13 (c) 5 (d) The point (5, -4) lies in the quadrant (b) II (c) III IV (xi) If two lines are perpendicular then relation between their slopes m₁ and m₂ is: (a) $m_1 = m_2$ (b) $m_1 \cdot m_2 = -1$ (c) $m_1 = 1/m_2$ (d) $m_1 + m_2 = -1$ (xii) x-intercept of line 3x + 4y - 12 = 0 is:

(a) 3

(b) 4

(c) 1

(d) 12

(xiii) The equation of line parallel to y-axis is

(a) x = a

(b) y = a

(c) x = y (d) $\mathbf{x} = -\mathbf{y}$

(xiv) Radius of circle $x^2 + y^2 - 25 = 0$ is

(a) 5

(b) -5

25 (c)

(d) -25

(xv) Centre of the circle $x^2 + y^2 - 2x - 4y = 8$ is

(a) (2,4)

(b) (-2, -4)

(c) (1,2)

(d) (-1, -2)

MODEL PAPER MATH123: APPLIED MATHEMATICS – I DAE FIRST YEAR EXAMINATION 2011 & ONWARD

Common with Electrical, Instrument, Food, Computer, Electronics, Computer Information, Telecommunications and Bio-Medical Technologies

PAPER B: SUBJECTIVE

Time: 2 hours 30 Minutes

Marks: 60

Note: Solve any EIGHTEEN (18) questions from Section-I and any THREE (3) questions from Section-II

SECTION-I

Q.No. 2. Write short answers to any EIGHTEEN (18) from the following questions.

 $(18 \times 2 = 36)$

- (i) Resolve into partial fractions 2x/(x-2)(x+5)
- (ii) Define rational proper fraction and give example.
- (iii) Write an identity equation of $8x^2/(1-x^2)(1+x^2)^2$
- (iv) Resolve into partial fractions $1/(x^2 x^2)$
- (v) Add and subtract the complex numbers 3 + 4i and 2 7i
- (vi) Divide 3 + 4i by 2-7i and write answer in the form a + ib
- (vii) Fractorize $49a^2 + 625b^2$
- (viii) Write complex number $-1 + i\sqrt{3}$ in the polar form
- (ix) Find complex number z when $|z| = 8\sqrt{2}$ and arg $z = \pi/4$
- (x) Prove by Boolean rules the logical equation X + Y.Z = (X + Y) (X + Z)
- (xi) Prove that $\overline{A + B} = \overline{A} \cdot \overline{B}$ by truth table
- (xii) Draw a logic circuit diagram for A.(B + \overline{C})
- (xiii) Define NAND gate in logic circuit diagram
- (xiv) Prepare a truth table for $AB + \overline{AB}$
- (xv) Find distance between A $(1 \sqrt{2}, 1 \sqrt{3})$ and $(1 + \sqrt{2}, 1 + \sqrt{3})$
- (xvi) Is the point (0, 4) inside or out side the circle of radius 4 with centre at (-3, 1)?
- (xvii) Find the coordinates of the midpoint of the line segment A (3,7) and B (-2,3)
- (xviii) Obtain the ratio in which the point (3, -2) divides the line formed by (1,4) and (-3,16)
- (xix) Find an equation of the line with slope 2/3 and having y-intercept 3.
- (xx) Find k if the two lines 5x 3y = 12 and kx y = 2 are parallel.
- (xxi) Write 3x + 4y 10 = 0 in slope intercept form.
- (xxii) Show that the points (1,9), (-2,3) and (-5,-3) are callinear.
- (xxiii) Show that the line contain (0,-7), (8,-5) and the line contain (5,7), (8,-5) are perpendicular.
- (xxiv) Find the equation of the circle with centre at (-2,3) and radius 6.
- (xxv) Find centre and radius of circle $x^2 + y^2 4x + y 1 = 0$
- (xxvi) Find the equation of circle centered at the origin and radius $\sqrt{2}$.
- (xxvii) What type of the circle is represented by $x^2 + y^2 2x + 4y + 8 = 0$

SECTION - II

Note: Solve any THREE (3) questions.

 $(8 \times 3 = 24)$

- **Q.3 (a)** Resolve into partial fractions $1/(x^3-1)$
 - **(b)** Resolve into partial fractions $(6x+27)/(4x^3-9x)$
- Q.4 (a) Extract the square roots of 8-6i
 - **(b)** Reduce (2 + i) (1 i) / (4 3i) to the form a + ib
- Q.5 (a) Convert the binary number (10101101)₂ to the octal equivalent.
 - (b) Prove $(A+B)(\overline{A}+C)(B+C) = (A+B)(\overline{A}+C)$ by constructing truth table.
- Q.6 (a) Show tht the points A (2,2), B (6,6) and C (11,1) are the vertices of a right triangle.
 - (b) Find the equation of the perpendicular bisector of line segment joing the points (-4,6) and (6,-10).
- **Q.7 (a)** Find the equation of circle passing through the points (0, 1), (3, -3) and (3, -1).
 - **(b)** Find the equation of the circle having (-2,5) and (3,4) as the end points of its diameter.