BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

Date: 12-05-2016 9:30 a.m. to 9:50 a.m.

NOTE:

1.

CHEMISTRY PAPER - I

(Science Pre-Engineering & Pre-Medical Groups)

Max. Marks: 17
Time: 20 minutes

The correct answers are
highlighted in red colour.

i)

SECTION 'A' TIPLE CHOICE QUESTIONS) – (M.C.Qs.)

This section consists of 17 part questions and all are to be answered.

Each question carries one mark.

Write this Code No. in the Answerscript.

Choose the correct answer for each from the given options: i) The Octet rule is not valid for this molecule: **Ny** **CO2***** **No** **CO2**** The yield of Ammonia in Haber's process is favoured by: **High pressure and ligh temperature** **Low pressure and ligh temperature** **Low pressure and ligh temperature** **Itigh pressure and ligh temperature** **This ion has greatest degree of hydration: **Na** **Ma**** **Ma**** **Na** **Ma*** **Na** **Ma*** **Itigh pressure and low temperature** **Low pressure and ligh temperature** **Low pressure and ligh temperature** **Itigh pressure and low temperature** **Low pressure and ligh temperature** **Au** **Ma*** **Na** **Ma*** **N		 ii) Do not copy the part questions in your answerscript. Write only the answer <u>in full</u> against the proper number of the question and its part. iii) The code of your question paper is to be written <u>in bold letters</u> in the beginning of the answerscript. 												
iii) The yield of Ammonia in Haber's process is favoured by: * High pressure and low temperature * Low pressure and low temperature * Low pressure and low temperature * Na* Na* Na* Ng* Ng** Ng** Ng** iv) The volume of 3.01×10^{23} molecules of N_2 gas at S.T.P. will be: * $3dm^3$ * $1.2dm^2$ * $22.4dm^3$ * $28dm^3$ v) $Rate = K NH_3^{-2}$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: * $2X$ * $4X$ * $8X$ * $16X$ vi) This is not extensive property: * $Entropy$ * $Viscosity$ * $Enthalpy$ *	Choose the correct answer for each from the given options:													
iii) The yield of Ammonia in Haber's process is favoured by: ** High pressure and high temperature* ** Low pressure and low temperature* ** Na** * Mg^{+2} * Mf^{-3} * K^{+} iii) This ion has greatest degree of hydration: ** Na^{2} * Mg^{+2} * Mf^{-3} * Mg^{+2}	i)	The Octe	t rule is no	t valid for	this mole	ecule:								
# High pressure and low temperature * Low pressure and low temperature Low pressure and high temperature * Low pressure and low temperature Low pressure and high temperature * Low pressure and low temperature Low properties March and high temperature * Low properties Low properties March and high temperature * Low properties Low properties * L		*	N_2	*	CO_2		*	O_2		*	H_2			
iii) This ion has greatest degree of hydration: $*Na^+$ * Mg^{+2} * MI^{+3} * K^+ iv) The volume of 3.01×10^{23} molecules of N_2 gas at S.T.P. will be: $*3dm^3$ * $11.2dm^3$ * $22.4dm^3$ * $28dm^3$ v) Rate = $K NH_3^2$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: $*2X$ * $4X$ * $8X$ * $16X$ vi) This is not extensive property: $*Entropy$ * $Viscosity$ * $Enthalpy$ * $Internal Energy$ vii) The extent of reaction will be maximum for this K_7 value: $*10^{-13}$ * 0.1 * 10 * 10^3 viii) This Hydrogen halide has the highest percentage of ionic character: $*III^2$ * HCl * HBr * HI ix) These have low values of activation energy: $*Silow$ reactions * $Ionic$	ii)	-												
* Na^{+} * Mg^{+2} * Af^{+3} * K^{+} iv) The volume of 3.01×10^{23} molecules of N_2 gas at S.T.P. will be: * $3dm^3$ * $11.2dm^3$ * $22.4dm^3$ * $28dm^3$ v) $Rate = K NH_3^{-2}$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: * $2X$ * $4X$ * $8X$ * $16X$ vi) This is not extensive property: * Entropy * $Viscosity$ * Enthalpy * Internal Energy vii) The extent of reaction will be maximum for this K_c value: * 10^{-13} * 0.1 * 10 * 10^3 * 10^3 viii) This Hydrogen halide has the highest percentage of ionic character: * HF * HCl * HBr * HI ix) These have low values of activation energy: * Slow reactions * $Ionic$ reactions * Noderate reactions * $Ionic$ reactions * $Ionic$ reactions							*							
* Na^{+} * Mg^{+2} * Af^{+3} * K^{+} iv) The volume of 3.01×10^{23} molecules of N_2 gas at S.T.P. will be: * $3dm^3$ * $11.2dm^3$ * $22.4dm^3$ * $28dm^3$ v) $Rate = K NH_3^{-2}$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: * $2X$ * $4X$ * $8X$ * $16X$ vi) This is not extensive property: * Entropy * $Viscosity$ * Enthalpy * Internal Energy vii) The extent of reaction will be maximum for this K_c value: * 10^{-13} * 0.1 * 10 * 10^3 * 10^3 viii) This Hydrogen halide has the highest percentage of ionic character: * HF * HCl * HBr * HI ix) These have low values of activation energy: * Slow reactions * $Ionic$ reactions * Noderate reactions * $Ionic$ reactions * $Ionic$ reactions														
iv) The volume of 3.01×10^{23} molecules of N_2 gas at S.T.P. will be: * $3dm^3$ * $11.2dm^3$ * $22.4dm^3$ * $28dm^3$ v) $Rate = K NH_3^2$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: * $2X$ * $4X$ * $8X$ * $16S$ vi) This is not extensive property: * Entropy * Viscosity * Enthalpy * Internal Energy vii) The extent of reaction will be maximum for this K, value: * 10^{-13} * 0.1 * 10 * 10 * 10^{-13} * 10	iii)		-	st degree o	of hydration *	on: Mo^{+2}		*	AI^{+3}		*	K^{+}		
* $3dm^3$ * $11.2dm^1$ * $22.4dm^3$ * $28dm^3$ *** *** ** *** *** *** ***				1, 1023	1 1			D '11.1.				71		
v) $Rate = K \ NH_3^2$. Keeping the other conditions same, if the concentration of NH_3 is increased by four times, then the initial rate of reaction X will be: * 2X * 4X * 8X * [6X] vi) This is not extensive property: * Entropy * Viscosity * Enthalpy * Internal Energy viii) The extent of reaction will be maximum for this K_c value: * 10^{-13} * 0.1 * 10 * 10^3	1V)			1×10 r						3	ala	20.13	3	
then the initial rate of reaction X will be:		ক	sam		ক	11.2a	um"	<u>ጥ</u>	22.4 <i>a</i>	m	ক	28am		
* 2X	v)													
This is not extensive property: * Entropy * Viscosity * Enthalpy * Internal Energy vii) The extent of reaction will be maximum for this K _c value: * 10 ⁻¹³ * 0.1 * 10 * 10 ³ This Hydrogen halide has the highest percentage of ionic character: * HIF * HCl * HBr * HI ix) These have low values of activation energy: * Slow reactions * Ionic reactions * Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: * CH ₄ * CO ₂ * H ₂ O * NH ₃ xi) Gases behave ideally at these conditions: * High pressures and high temperatures * Low pressures and low temperatures * Low pressures and high temperatures * Crystalline solid * Amorphous solid * Covalent solid * Ionic solid xiii) Bond Energy is the greatest for: * CH ₄ * O ₂ * N ₂ * Crystalline solid * Ionic solid xiii) Bond Energy is the greatest for: * CH ₄ * O ₂ * N ₂ * Cl ₂ xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Microscopic properties * Physical properties * Author of the street Energy * Author of the street Energy * HII * Dio						e:	*	8V		*	16 Y			
* Entropy * Viscosity * Enthalpy * Internal Energy vii) The extent of reaction will be maximum for this K _c value: * 10 ⁻¹³ * 0.1 * 10 * 10 ³ viii) This Hydrogen halide has the highest percentage of ionic character: * HF * HCl * HBr * HI ix) These have low values of activation energy: * Slow reactions * Fast reactions * Ionic reactions * Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: * CH ₄ * CO ₂ * H ₂ O * NH ₃ xi) Gases behave ideally at these conditions: * High pressures and high temperatures * High pressures and low temperatures * Low pressures and low temperatures * Low pressures and low temperatures * Low pressures and low temperatures * Crystalline solid * Amorphous solid * Covalent solid * Ionic solid	vi)	•						oΛ			101			
viii) This Hydrogen halide has the highest percentage of ionic character: * HF * HCl * HBr * HI ix) These have low values of activation energy: * Slow reactions * Ionic reactions * Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: * CH_4 * CO_2 * H_2O * NH_3 *	VI)			*		ity	*	Enthalp	у	*	Internal	Energy		
This Hydrogen halide has the highest percentage of ionic character: *** HF * HCl * HBr * HI ix) These have low values of activation energy: ** Slow reactions * Fast reactions ** Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: ** CH ₄ * CO ₂ * H ₂ O * NH ₃ xi) Gases behave ideally at these conditions: ** High pressures and high temperatures ** Low pressures and high temperatures ** Low pressures and low temperatures ** Low pressures and low temperatures xii) Glass is a/an: ** Crystalline solid * Amorphous solid * Covalent solid * Ionic solid xiii) Bond Energy is the greatest for: ** CH ₄ * O ₂ * N ₂ * Cl ₂ xiv) The bulk properties of a system, which are easily measurable, are known as: ** Microscopic properties * Chemical properties ** Macroscopic properties * Physical properties ** Macroscopic properties * Physical properties ** The characteristic of 10 ³ is: ** 2 * 1	vii)	The exter	nt of reacti	on will be	maximuı	m for this	K _c value	:						
* HF * HCl * HBr * HI ix) These have low values of activation energy:		*	10^{-13}	*	0.1		*	10		*	10^3			
ix) These have low values of activation energy: * Slow reactions	viii)	This Hyd	rogen hali	de has the	highest p	ercentago	e of ionic	characte	r:					
* Slow reactions * Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: * CH_4 * CO_2 * H_2O * NH_3 xi) Gases behave ideally at these conditions: * High pressures and high temperatures * High pressures and low temperatures * Low pressures and low temperatures * Low pressures and low temperatures * Crystalline solid * Amorphous solid * Covalent solid * Ionic soli		*	HF	*	HCl		*	HBr		*	HI			
* Moderate reactions * Ionic reactions x) The bond angle is maximum in this molecule: * CH_4 * CO_2 * H_2O * NH_3 xi) Gases behave ideally at these conditions: * High pressures and high temperatures * Low pressures and low temperatures * Low pressures and low temperatures * Low pressures and low temperatures xii) Glass is a/an: * Crystalline solid * Amorphous solid * Covalent solid * Ionic solid xiii) Bond Energy is the greatest for: * CH_4 * O_2 * N_2 * Cl_2 xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Macroscopic properties * Physical properties xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 * 5 * xvi) This molecule has zero dipole moment:	ix)				vation en	ergy:	*	Foot no	poetions					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$														
xi) Gases behave ideally at these conditions: * High pressures and high temperatures * Low pressures and low temperatures * Crystalline solid * Amorphous solid * Covalent solid * Ionic solid * Amorphous solid * Covalent solid * Ionic solid * CH ₄ * O_2 * N_2 * Cl_2 * Xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Macroscopic properties * Physical properties * You have considered as a system of the properties of the prop	x)	The bond	l angle is n	naximum	in this mo	lecule:								
* High pressures and high temperatures * Low pressures and low temperatures * Low pressures		*	CH_4		*	CO_2		*	H_2O		*	NH_3		
* Low pressures and high temperatures xii) Glass is a/an: * Crystalline solid * Amorphous solid * Covalent solid * Ionic solid xiii) Bond Energy is the greatest for: * CH_4 * O_2 * N_2 * Cl_2 xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Macroscopic properties * Physical properties xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:	xi)			•				*	III ah aa		1 1 4			
* Crystalline solid * Amorphous solid * Covalent solid * Ionic solid xiii) Bond Energy is the greatest for: * CH_4 * O_2 * N_2 * Cl_2 xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Macroscopic properties * Physical properties xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:								riigh pressures and low temperatures						
xiii) Bond Energy is the greatest for: * CH_4 * O_2 * N_2 * Cl_2 xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Macroscopic properties * Physical properties xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:	xii)							_						
* CH_4 * O_2 * N_2 * Cl_2 xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties * Chemical properties * Physical properties xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:		*	Crystalline	solid	*	Amorp	hous soli	id	*	Covale	nt solid	*	Ionic solid	
xiv) The bulk properties of a system, which are easily measurable, are known as: * Microscopic properties	xiii)			greatest fo			at.	7.7		di	C1			
* Microscopic properties * Macroscopic properties * Chemical properties * Physical properties xv) The characteristic of 10 ³ is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:		*	CH_4	*	O_2		*	N_2		*	Cl_2			
* Macroscopic properties * Physical properties xv) The characteristic of 10 ³ is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:	xiv)					are easil	y measura							
xv) The characteristic of 10^3 is: * 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:														
* 2 * 3 * 4 * 5 xvi) This molecule has zero dipole moment:		•							Thysical properties					
xvi) This molecule has zero dipole moment:	XV)				<u>3</u>		*	4		*	5			
	xvi)	This mole	ecule has z	zero dipole	_	:								
	,			*			*	H_2O		*	HCl			
" TI 1 1 1 C 1 1 C 1 C 1 C 1 C 1 C 1 C 1 C	•••	mu :		4		3 0. 37	OII	_	113					
xvii) The molarity of a solution containing $20g$ $NaOH$ dissolved into $1dm^3$ solution will be: * 0.1 * 1 * 2	XV11)					20g Na			o 1 <i>am</i>					

----XXXXXXXXXXX----