BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

9:30 a.m. to 9:50 a.m.

MATHEMATICS PAPER – I

(Science Pre-Engineering & Science General Groups) Time: 20 minutes

The correct answers are highlighted in red colour.

SECTION 'A' (MULTIPLE CHOICE OUESTIONS) – (M.C.Os.)

Max. Marks: 20

NOTE:

This section consists of 20 part questions and all are to be answered. Each question carries one mark.

Write this Code No. in the Answerscript.

- Do not copy the part questions in your answerbook. Write only the answer in full against the proper ii) number of the question and its part.
- The code of your question paper is to be written in bold letters in the beginning of the answerscript. iii)
- The use of calculator is allowed. All notations are used in their usual meanings. iv)
- 1. Choose the correct answer for each from the given options:

i)	If the m	easurements of	of the s	ides of a triangle	e ABC are 3	3 units 4 units a	nd 5 units, t	then $2s = :$
	*	6 unit	*	8 units	*	12 units	*	16 units

ii) If 'A' is a non-singular matrix, then A^{-1} =:

*
$$\frac{Adj \ A}{A}$$

$$\frac{Adj A}{|A|}$$

$$\frac{|A|}{Adj}$$

The sum of the roots of $x^2 - 15x + 6 = 0$ is: iii)

$$\frac{15}{2}$$

iv)
$$\frac{1}{\sqrt{1+\cot^2\theta}}:$$

*
$$\csc\theta$$

$$\sin \theta$$

$$\csc^2\theta$$

$$\sin^2 \theta$$

v)
$$\sum n = :$$

vii)

*
$$\frac{n + 1}{2}$$

$$\frac{n+}{2}$$

$$\frac{n^2}{2} \frac{n+1}{2}$$

$$\frac{n + 2}{2}$$

If $\cos\theta$ is positive and $\sin\theta$ is negative, then ρ θ lies in this quadrant: vi)

$$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$$

the matrix
$$\begin{bmatrix} 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

Row matrix

viii) The multiplicative inverse of c, d is:

$$* \left(\frac{c}{c^2+d^2}, \frac{-d}{c^2+d^2}\right)$$

$$* \left(\frac{-c}{c^2+d^2}, \frac{d}{c^2+d^2}\right)$$

$$\left(\frac{-c}{2}, \frac{d}{2}\right)$$

The equation having the roots ω and ω^2 is: ix)

*
$$x^2 + x + 1 = 0$$

*
$$x^2 - x + 1 = 0$$
 * $x^2 + x - 1 = 0$ * $x^2 - x - 1 = 0$

$$x^2 + x - 1 = 0$$
 *

$$x^2 - x - 1 = 0$$

x)
$$\binom{7}{2, 2}$$
 is equal to:

Continued on the next page.....

Write this Code No. in the Answerscript.

xi) The nth term of the sequence 2,4,6,8,.... is:

$$\frac{1}{2n}$$

If z = x + iy, then the real part of $z + \overline{z}$ is: xii)

xiii) The period of an heta is:

$$\frac{3\pi}{2}$$
 *

$$\pi$$

$$2\pi$$

If $\begin{bmatrix} 3 & 5 \\ 9 & -\lambda \end{bmatrix}$ is a singular matrix, then λ will be:

If Discriminant of a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, is zero, then the roots of the equation are: xv)

```
Irrational and equal
```

If A = 0.1, B = 2.1 and C = 2.3, then $A \times B \cap C =$: xvi)

The probability of getting the tail in a single toss of a coin is: xvii)

*
$$\frac{1}{3}$$

$$\frac{1}{2}$$

Simplified form of $\frac{n+1!}{n-1!}$ is: xviii)

*
$$\frac{n-1}{n+1}$$

$$n + 1$$

$$\frac{n+}{n-}$$

The middle term in the expansion of $\left(x - \frac{2y}{3}\right)^{10}$ is: xix)

16

 $1-\omega-\omega^2^{-4}=:$ xx)

-----XXXXXXXXXXX