BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

Date: 07.05.2016 9:30 a.m. to 9:50 a.m.

MATHEMATICS PAPER - I

(Science Pre-Engineering & Science General Groups)

Time: 20 minutes

Max. Marks: 20

The correct answers are highlighted in red colour

SECTION 'A' (MULTIPLE CHOICE OUESTIONS) – (M.C.Os.)

NOTE:

This section consists of 20 part questions and all are to be answered. Write this Code No. in the Answerscript. i) Each question carries one mark.

- ii) Do not copy the part questions in your answerbook. Write only the answer in full against the proper number of the question and its part.
- The code of your question paper is to be written in bold letters in the beginning of the answerscript. iii)
- The use of calculator is allowed. All notations are used in their usual meanings. iv)
- Choose the correct answer for each from the given options:

i) If
$$\begin{bmatrix} 3 & a \\ 2 & 8 \end{bmatrix}$$
 is a singular matrix, then the value of 'a' is:

* 10 * 12 * -12 * $\frac{1}{12}$

ii) The middle term in the expansion of
$$\left(x^2 + \frac{1}{x}\right)^{2n}$$
 is:

* $2n+1$ * term * $n+1$ * term * $2n+2$ * term * $n+2$ * term

iii)
$$\frac{2\pi}{3}$$
 radians in degrees is equal to:

* 60° * 90° * 120° * 150°

v)
$$\tan^{-1} \tan(-1) = :$$

* $\frac{\sqrt{3}}{2}$ * 1 * $\frac{1}{2}$

vi)
$$\sum n^2 = :$$
* $\frac{n \ n-1}{2} * \frac{n \ n+1}{4} * \frac{n \ n+1}{2} * \frac{n \ n+1}{6}$

vii)
$$\sin\left(\frac{\pi}{2} - \theta\right) = :$$

$$* \cos\theta * -\sin\theta * \sin\theta * -\cos\theta$$

ix)
$$\pi$$
 is a/an:

* Natural number * Integer * Rational number * Irrational number

xi) If
$$z = 3 + 4i$$
 then $z + \overline{z} = 8i$ * 0 * -1

Continued on the next page.....

Write this Code No. in the Answerscript

				-	_			Write	tnis Coa	e No. in the Ansv
xii)	If $z = a, b$ is a complex number then $z = :$									
	*	<i>a</i> ,- <i>b</i>	*	-a,b	*	a,b	*	:	-a,-b	b
xiii)		imaginary nu	mber the				1			1
	*	<u></u>		* i		*	1	:	*	-1
xiv)	If ω is a complex cube roots of unity then ω^{17} =:									
	*	0	*	1	*	ω	*	:	ω^2	
xv)	If the roots of the equation $px^2 + qx + r = 0$ are imaginary then $q^2 - 4pr$ is:									
AV)	*	zero	* *	less than a			than zero		*	perfect square
xvi)	$\begin{bmatrix} 2 \\ 0 \end{bmatrix}$	0 -2 is a/an:								
	*	Rectangular	r Matrix	* S	calar Matrix	*	Diagonal	Matrix	*	Unit Matrix
xvii)	If a die and a coin are tossed simultaneously then the probability of getting two heads is:									
	*	$\frac{1}{3}$	*	$\frac{1}{2}$	*	0	*	: · ·	1	
	Tri.	1	1	7		1 1	14-1-1-1-1			
xviii)	ne nu *	mber of ways 6	*	6!	se seated ard	ound a round 7	table is:		7!	
xix)	If 4^{x+2}	$x^2 = 64$ then x	is equal	to:						
	*	2	*	0	*	1	*		3	
xx)	If the o	order of two m	atrices A	and B is m	$n \times n$ and $n > n$	$\times p$ respecti	ively, then t	he order	of matr	$\operatorname{ix} AB$ is:
	*	$p \times m$	*	$n \times p$	*	$p \times n$	*	:	$m \times p$	

-----XXXXXXXXXX