BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

or ranure, improvement of Grave & Additional Subject Candidates Only Additional 9:30 a.m. to 9:50 a.m.

MATHEMATICS PAPER – I

(Science Pre-Engineering & Science General Groups)

Time: 20 minutes

Max. Marks: 20

The correct answers are highlighted in red colour.

SECTION 'A' CHOICE OUESTIONS) – (M.C.Os.)

NOTE:

This section consists of 20 part questions and all are to be answered i) Each question carries one mark.

Write this Code No. in the Answerscript.

- ii) Do not copy the part questions in your answerbook. Write only the answer in full against the proper number of the question and its part.
- iii) The code of your question paper is to be written in bold letters in the beginning of the answerscript.
- The use of calculator is allowed. All notations are used in their usual meanings. iv)
- Choose the correct answer for each from the given options:
 - The equation having the roots ω and ω^2 is: i) $x^{2}-x+1=0$ * $x^{2}+x-1=0$ * $x^{2}-x-1=0$
 - ii) is equal to: 630 2520
 - iii) The nth term of the sequence 2,4,6,8,.... is:
 - If z = x + iy, then the real part of z + z is: iv) 2ix2y2iy
 - The period of $\tan \theta$ is: v) 2π
 - is a singular matrix, then λ will be: vi) -15-27
 - If Discriminant of a quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, is zero, then the roots of the equation are: vii) Irrational and equal Real and equal Complex and unequal Rational and unequal
 - If $A = \{0,1\}$, $B = \{2,1\}$ and $C = \{2,3\}$, then $A \times (B \cap C) = :$ viii) $\{(1,3),(0,1)\}$ * $\{(2,3),(1,1)\}$
 - The probability of getting the tail in a single toss of a coin is: ix) 2
 - Simplified form of $\frac{(n+1)!}{(n-1)!}$ is: x) * n(n-1)n+1

Continued on the next page.....

Write this Code No. in the Answerscript.

The middle term in the expansion of $\left(x - \frac{2y}{3}\right)^{10}$ is:

* 3^{rd} * 4^{th} * xi)

xii)
$$(1-\omega-\omega^2)^4 = :$$
* -1 * 2 * 4 * 16

xiii) If the measurements of the sides of a triangle ABC are 3 units 4 units and 5 units, then 2s = 1 units8 units * 12 units

xiv) If 'A' is a non-singular matrix, then
$$A^{-1} = :$$

$$* \frac{Adj A}{A} * \frac{Adj A}{|A|} * \frac{|Adj A|}{|A|} * \frac{|Adj A|}{|A|} Adj A$$

The sum of the roots of $x^2 - 15x + 6 = 0$ is: xv) * -15 * 3

xvi)
$$\frac{1}{\sqrt{1+\cot^2\theta}}$$
:
* $\csc\theta$ * $\sin\theta$ * $\csc^2\theta$ * $\sin^2\theta$

xvii)
$$\sum n = :$$

* $\frac{n(n+1)}{2}$ * $\frac{n+1}{2}$ * $\frac{n^2(n+1)^2}{2}$ * $\frac{n(n+2)}{2}$

If $\cos \theta$ is positive and $\sin \theta$ is negative, then $\rho(\theta)$ lies in this quadrant: xviii) * 1st * 2nd 4th

xix) The matrix
$$\begin{bmatrix} 2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
 is a:
$$* Scalar matrix * Null matrix * Diagonal matrix * Row matrix$$

The multiplicative inverse of (c,d) is: xx)

*
$$\left(\frac{c}{c^2 + d^2}, \frac{-d}{c^2 + d^2}\right)$$
 * $\left(\frac{-c}{c^2 + d^2}, \frac{d}{c^2 + d^2}\right)$ * $\left(\frac{c}{c^2 - d^2}, \frac{-d}{c^2 - d^2}\right)$

-----XXXXXXXXXX