BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

Date: 03.05.2016 9:30 a.m. to 9:50 a.m.

NOTE:

1.

PHYSICS PAPER - I

(Science Groups)

Time: 20 minutes

Max. Marks: 17

The correct answers are highlighted in red colour.

i)

ii)

SECTION 'A' (MULTIPLE CHOICE QUESTIONS) – (M.C.Qs.)

Each question carries one mark.

This section consists of 17 part questions and all are to be answered. Write this Code No. in the Answerscript.

Do not copy the part questions in your answerbook. Write only the answer in full against the proper

	iii) iv)	The co		question	paper is	to be wri				beginning their usual r		
Select th	he most ap	opropriate a	nswer for	each fron	n the give	n options	:					
i)	The dime	ensions of C	G are:									
	*	$M^{-1}L^3T^{-1}$	-2		*	M^2L^2T	7-2	*	M^{-1}	L^2T^{-2}	*	MLT^{-2}
ii)	*	ty of a body in the direct perpendicu	tion of vel	ocity			ration is: * *			e direction		ty
iii)		of change of Linear mor	_	momentu *	m is also Torque	1	s: *	Force		*	Energy	
iv)	accelerat	ance, equal tion will be One half		f the radi	us of the One fou		eve the su	rface of Four tin		rth, the valu	e of gravi	
v)	*	ge of audible 1 Hz – 19 l 21000 Hz -	Hz	Z		*		20000 H				
vi)		ditions of in Diffraction		in thin fi *		versed du oherence	e to:	*	Refra	ection	*	Phase reversal
vii)	The mag	nifying pov	ver of a ler	ns of foca	l length	$\frac{1}{2}m$ is:						
	*	1 dioptre		*	2 diopti	res	*	50 diopt	tres		*	100 dioptres
viii)	This equ	ation representation $m\lambda = 2a$		g's Law: *	$m\lambda = 0$	$d\sin\theta$	*	$2m\lambda =$	d sin	$_{1} heta$	*	$2m\lambda = 3d\sin\theta$
ix)		ance betwee Aperture	en the princ	cipal focu		optical c		alled:	Foca	l length	*	Principal axis
x)	If \hat{i} , \hat{j} a	and \hat{k} are ι	ınit vectors	s, then \hat{k}	$\exists \ \hat{i} \times \hat{j}$	is equal to	o:					
	*	zero	*	one		*	\hat{j}		*	\hat{k}		
xi)	The angle between centripetal acceleration and tangential accelerat							tion in ci	rcular	motion is:		
	*	180^{o}	*	0^{o}		*	90°		*	45°		
xii)	Kitabul I	Manazir wa <mark>Ibn-Al Ha</mark>		y: *	Al Razi		*	Abu-Re	han Al	l Beruni	*	Jabir bin Hayyan
xiii)	One radi	an is equal I^o	to:	*	75.3°		*	57.3°		*	0.017°	
xiv)	One kilo	watt hour i	s equal to:									
	*	3.6×10^6	J	*	3.3×10	$0^9 J$	*	3.9×1	$0^6 J$		*	$3.6 \times 10^9 J$
xv)		rating bodie Echo	es, having s	slightly d *	ifferent fi Beats	requencie	s, produc *	ce: Resonar	nce	*	Polariza	tion
xvi)	If $\overline{A} \Box \overline{B}$	$=0, \ \overline{A} \times \overline{I}$	$\bar{B} = 0$ and	$\overline{A} \neq 0$,	then vect	or \overline{B} is:						
	*	Equal to \overline{A}	- \	*	Parallel	to \overline{A}		*	Perpe	endicular to	\overline{A}	* zero
xvii)	Kinetic f	riction is al greater than	n static fric			*	equal to	static fri	ction			

-----XXXXXXXXXX