BOARD OF INTERMEDIATE EDUCATION, KARACHI

INTERMEDIATE EXAMINATION, 2016 (ANNUAL)

Date: 03.05.2016 9:30 a.m. to 9:50 a.m.

NOTE:

1.

PHYSICS PAPER - I

(Science Groups)

SECTION 'A'

Max. Marks: 17

Time: 20 minutes

The correct answers are highlighted in red colour.
--

i)

(MULTIPLE CHOICE QUESTIONS) – (M.C.Qs.)

This section consists of 17 part questions and all are to be answered. Write this Code No. in the Answerscript.

- Each question carries one mark. ii) Do not copy the part questions in your answerbook. Write only the answer in full against the proper
- number of the question and its part.

 The code of your question paper is to be written in hold letters in the beginning of the answerscript iii)

	iv)			ulator is allowed.					
Select t	the most a	appropriate answe	r for each fro	m the given option	ns:				
i)	The ran	nge of audible sour 1 Hz – 19 Hz 21000 Hz – 240		*		z – 20000 Hz O Hz – 50000 Hz			
ii)	The cor	nditions of interfer Diffraction	rence in thin f	ilm are reversed of Phase coherence		* R	efraction	*	Phase reversal
iii)	The ma	gnifying power of	f a lens of foc	al length $\frac{1}{2}m$ is:					
	*	1 dioptre	*	2 dioptres	*	50 dioptre	S	*	100 dioptres
iv)	This eq	uation represents $m\lambda = 2d \sin \alpha$	_ ~~	$m\lambda = d\sin\theta$	*	$2m\lambda = d$	$l\sin\theta$	*	$2m\lambda = 3d\sin\theta$
v)	The dis	tance between the Aperture	principal foc	eus and the optical Radius of curva			ocal length	*	Principal axis
vi)	If \hat{i} , \hat{j} and \hat{k} are unit vectors, then $\hat{k}\Box(\hat{i}\times\hat{j})$ is equal to:								
ŕ	*	zero *	one	*	\hat{j}	*	\hat{k}		
vii)	The ang	gle between centri	petal accelera	ntion and tangentia	al acceler	ation in circu	lar motion is:		
	*	180° *	0^{o}	*	90°	*	45°		
viii)	Kitabul *	Manazir was wri		Al Razi	*	Abu-Reha	n Al Beruni	*	Jabir bin Hayyan
ix)	One rac	dian is equal to: I^o	*	75.3°	*	57.3°	*	0.017°	
x)	One kil	o watt hour is equ	al to:						
	*	$3.6 \times 10^6 J$	*	$3.3 \times 10^9 J$	*	3.9×10^6	J	*	$3.6 \times 10^{9} J$
xi)	Two vil	brating bodies, ha Echo	ving slightly (different frequenc Beats	ies, produ *	uce: Resonance	*	Polariza	ation
xii)	If $\overline{A}\Box\overline{B}$	$\overline{B} = 0, \ \overline{A} \times \overline{B} = 0$	and $\overline{A} \neq 0$, then vector \overline{B} is	s:				
	*	Equal to \overline{A}	*	Parallel to \overline{A}		* P	erpendicular to	\overline{A}	* zero
xiii)	Kinetic *	friction is always greater than state less than static	ic friction	*	equal t zero	o static fricti	on		
xiv)	The din	mensions of G are: $M^{-1}L^3T^{-2}$		* M^2L^2	$^2T^{-2}$	* /	$M^{-1}L^2T^{-2}$	*	MLT^{-2}
xv)	If velocity of a body is decreasing, the direction of acceleration is: * in the direction of velocity							ity	
xvi)	The rate	e of change of ang Linear momentu		um is also known <mark>Torque</mark>	as: *	Force	*	Energy	
xvii)		At a distance, equal to twice of the radius of the earth, above the surface of the earth, the value of gravitational acceleration will be:							
	*	One half	*	One fourth	*	Four times	*	One ni	nth

-----XXXXXXXXXX